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Summary

The “direct control method” is a novel concept that is an attractive alternative and competitor to the
differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear,
time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form
control laws based on minimization of a quadratic control performance measure. We present an
application of the direct method to the dynamics and optimal control of the Duffing system where the
control performance measure is not restricted to a quadratic form and hence may include a quartic energy
term. The results we present in this report also constitute further generalizations of our earlier work in
“direct optimal control methodology.” The approach is demonstrated for the optimal control of the
Duffing equation with a softening nonlinear stiffness.

Introduction

The study of dynamical systems via differential equations of motion is referred to as an “indirect
method.” On the other hand, the study of dynamic systems without any resort to or knowledge of
differential equations of motion is referred to as the “direct method.” In the direct method, algebraic
equations of motion (AEM) take the place of the traditional differential equations of motion. The AEM
are obtained by using Hamilton’s Law of Varying Action (HLVA) in conjunction with the assumed-time-
mode expansions of the generalized coordinates (ref. 1). The constant unknown coefficients of the
assumed basis functions in time of these expansions become the generalized (algebraic) states of the
dynamic system. If there are control inputs on the dynamic system, they too can be expanded in terms of
assumed basis functions in time multiplied by constant unknown coefficients of expansion playing the
role of generalized (algebraic) control inputs.

By virtue of the assumed-time-mode (ATM) expansions of the generalized coordinates and the
controls, the variational work energy quantities in HLVA can be integrated a priori in time over any time
interval. This provides a set of purely algebraic equations describing the motion in terms of the constant
unknown algebraic states and the algebraic control inputs for the time interval considered.

Presently, nonlinear optimal control problems are formulated in terms of differential equations. In
most cases, however, it is not possible to formulate an explicit, nonlinear optimal control law in this
setting. At best, the control law must be generated numerically at the expense of much computational
effort (ref. 2).

Instead of differential equations, the method applied in this report produces an explicit nonlinear
algebraic optimal control law by using algebraic equations of motion and an algebraic control
performance measure. The algebraic performance measure is again obtained by representing the
generalized coordinates and control inputs of a dynamic system in terms of assumed-time-modes
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expansions and introducing them into a time-integral control performance measure. The complexities
associated with nonlinear systems are no longer a serious issue with this approach, and the solutions can
be obtained directly in explicit form with relative ease.

By contrast, in a differential setting, various strategies are attempted to avoid the complexities
and difficulties caused by the nonlinearities. Three such strategies are (1) linearizing the system,
(2) approximating the system with a large number of linear models, and (3) converting the system
to a linear equivalent using a nonlinear coordinate transformation. All of them, however, involve
simplification and approximation of the original system. Such issues are eliminated at the outset when
the algebraic equations of motion are used.

In the AEM setting, the generalized coordinates of a system are expanded in time over the interval

(t0, t1) in terms of admissible time basis functions. For n generalized coordinates qr(t), these expansions
can be written as

q t A t r nr rk
k

N

rk

r

( ) = ( ) = ( )
=
∑

0

1 2 1α , , . . . ,

where Ark (t) are admissible assumed time basis functions that are independent and continuous with

continuous derivatives over (t0, t1), and αrk are unknown constant coefficients.
Hamilton’s Law of Varying Action can be expressed as

δ δ δT W t q
T

q
t

t
T

t

t

+( ) − ∂
∂

= ( )∫ d
˙

0

1
1

0

0 2

where T is the kinetic energy, δW is the variational work, and q is the n-dimensional generalized
coordinates vector. Once the assumed-time-modes expansions are invoked, each term becomes a known
function of time. This allows HLVA to be explicitly evaluated, thereby eliminating time and yielding a set

of n algebraic equations of motion in which the coefficients αrk become the unknown algebraic
coordinates or states.

Similar to the generalized coordinates, the inputs fr (t) on a system can also be expressed in terms of
basis functions in time as

f t B t r mr rk
k

M

rk

r

( ) = ( ) = ( )
=
∑

0

1 2 3β , , . . . ,

where Brk (t) are admissible assumed-time-modes for the inputs, and the constants βrk become the
unknown algebraic input coordinates or input states (refs. 1 and 3 to 6). When substituted into HLVA,
equation (2), for the variational work of the inputs, expansion equation (3), also allows a priori explicit
integration in time. Then the resulting algebraic equations of motion are in terms of the unknown

coefficients αrk (algebraic states) and βrk (algebraic inputs).
Analysis and control of dynamic systems via HLVA without resorting to differential equations of

motion is called the direct method. Response studies by the direct method were first demonstrated by
Bailey (refs. 7 to 9), and a direct control method (DCM) was first demonstrated by Öz and Raffie (ref. 10)
as an open-loop control. Öz and Adigüzel (refs. 3 and 5) and Adigüzel and Öz (refs. 4 and 6) extended the
DCM to include optimal feedback control of the algebraic states. Fuerst and Öz (ref. 11) demonstrated the
DCM for optimal nonlinear control of an aerodynamic body at a high angle of attack. The DCM applies
to time-variant, time-invariant, linear, and nonlinear systems with virtually the same simplicity and
generality. Since only algebraic equations are dealt with, the DCM promises to be an attractive competitor
and alternative to differential-equation-based methods.
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AEM for Duffing Dynamics

It proves convenient to express the HLVA in nondimensional time. For an arbitrary time interval of

motion (t1, t0), the nondimensional time τ is defined as

θτ θ τ= − = − ≤ ≤ ( )t t t t0 1 0 0 1 4, ,

In terms of nondimensional time τ, the form of HLVA is

δ δ δ δ τ δT W W W q
T

qC NC D
T+ + +( ) − ∂

∂ ′
= ( )∫0

1 1

0
0 5d

where subscripts C, NC, and D denote the work of conservative, nonconservative, and damping forces,
respectively. A prime (′) denotes the derivatives with respect to nondimensional time τ. Any control
inputs are to be included under the nonconservative work expression. By assuming the functional forms
of the energy-work expressions in terms of generalized coordinates, the general form of the AEM has
been derived in reference 1. Although tedious, their application to the Duffing dynamics is straight
forward to obtain the AEM for the Duffing system. The Duffing system that we consider is the classical
single-degree-of-freedom spring, mass, damper system with a harmonic external forcing function. The
nonlinearity is attributed to a quartic displacement term in the elastic potential energy of the system in
addition to the quadratic displacement term that produces the linear behavior. The damping is the result of
the usual linear viscous effect.

The kinetic energy and conservative work expressions in dimensional time that are required by the
HLVA for the single-degree-of-freedom Duffing system in terms of the generalized coordinate q are

T mq
T

q
mq V W V V k q k qC= ∂

∂
= = − = + = + ( )1

2
1
2

1
2

62 2 4
2

2
4

4˙
˙

˙

where 2V and 4V are the potential energies corresponding to quadratic and quartic terms in the generalized

coordinate q. m, k2, and k4 are the mass and stiffness coefficients, respectively. Note that the quartic term
will produce all the nonlinearities in the sequel. The other variational work expressions are the result of
the viscous damping force and the external forcing function:

δ δ δ δ δW cq q W W f qD NC f= − = = ( )˙ , 7

where c is the damping coefficient and f is the external force along q.
Next we introduce an assumed-time-modes expansion for (the single degree of freedom) q in terms of

the nondimensional time in the form

q A x A A A A A A A A

x q q

N

T T
N

T

τ τ τ α τ τ τ τ τ

α α α α α α

( ) = ( ) + ( ) = ( ) ( )[ ] = ( ) ( ) ( )[ ]
= [ ] = ( ) ′( )[ ] = [ ] ( )

0 0 0 10 11 12 13 1

0 0 1 2 30 0 8

, . . .

, . . .

where x0 is the two-component initial state vector of initial displacement and initial velocity and α is the
(N − 2)-component vector of generalized unknown constant algebraic states. Furthermore, the assumed-
time-mode functions have continuous derivatives with respect to time and satisfy certain boundary
conditions in time:

A j k Nk
j

jk1 0 0 9( ) = = ( )δ , , . . . ,
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where the superscript j denotes the j
th

 order derivative with respect to nondimensional time and δjk is the
Kronecker delta function. Theoretically, the choices for the assumed time modes are not unique and we
are not restricted to the form given in equation (9); however, we have been using it with excellent facility
in our work to date. Furthermore, the form we choose to use is simple enough and the time boundary
conditions can be satisfied easily, which leads to physically meaningful interpretations of the algebraic
states. Specifically, with the boundary conditions of equation (9), each generalized algebraic state satisfies

α τ α αk
kq q q k N= =( ) = ( ) = ′( ) = ( )0 0 0 0 100 1, , , . . . ,

where the superscript k denotes the k
th 

order nondimensional time derivative. Note that α0 and α1 are the
displacement and velocity initial conditions that are typically identified as time-dependent state variables

in a differential equation setting. On the other hand, for αk, k ≥ 2, acceleration and higher order
derivatives of generalized coordinates qualify as generalized (algebraic) states in the direct methodology.

By introducing the assumed-time-mode expansion equation (8) for q into the kinetic energy, potential
energy, and other work expressions, we transform to the algebraic states α as the unknowns. Then,
utilizing the form of the HLVA given by equation (5) in nondimensional time τ, we perform the required

variations on αk (k ≥ 2) as the unknowns to obtain in the following form the AEM for the Duffing system:

P P x R R x x NL N L N+ ( )[ ] + + ( )[ ] + = ( )0 0 0 0 11α

where N and the subscript N denote terms due to nonlinearities (quartic term) in the potential energy; the

term Qf  due to the external forcing function has been included in the function N for notational
convenience without the loss of generality; and the subscript L denotes terms due to linearities in the
potential energy (quadratic term), kinetic energy, and damping force. For control purposes, it is
convenient to write the AEM equation (11) by separating into alternate forms the linear and nonlinear
dynamics terms:

P Rx N P P P R R R

P R x P R x N

L N L N

L L N N

α

α α

+ + = = + = +

+ + = = + + ( )
0

0 0

0

0 12

, ,

,� �

�

The explicit expressions for the various matrices in the AEM equation (12) for the Duffing dynamics for
simple power series in time expansions as ATM’s are given in the appendix. The form of the AEM for the
Duffing dynamics equations (12) conforms to the general form of the AEM stated for general dynamic
systems in references 1 and 3 to 6.

The solution procedure for the response problem via the AEM consists of solving the algebraic
equations (11) and (12) for the unknown constants α and using these constants to evaluate the assumed-
time-mode expansions of the generalized coordinates, equation (8) for 0 ≤ τ ≤ 1 corresponding to any

time t in the interval (t0, t1). It must be emphasized that the above AEM pertain to any time interval

(t0, t1), which we refer to as the transition interval. However, one may also consider the transition interval
as a small time step, and equations (11) and (12) can be marched in time from one interval to the next.
This procedure requires the use of continuity equations of the form

x S x Sj j j
0

1
0 0 13+( ) ( ) ( )= + ( )α

where (j) and (j+1) represent two subsequent time intervals. The continuity matrices S0 and S are deduced
for any specific choice of the ATM expansions by keeping in mind that the generalized velocity and
displacement at the end of time interval (j) at τ = 1 are the initial velocity and displacement for the next
time interval (j+1) at τ = 0.
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Assumed-Time-Mode Expansions of (Control) Inputs

The control inputs on a dynamic system are external loads designed to satisfy certain performance
criteria. Similar to the generalized coordinates, the control input functions can also be represented as
expansions in assumed time modes. Denoting the control forces as f c (t) for m-inputs, the control input
expansions can be written as

f t B t B t r mr
c

rk
k

M

rk r r

r

( ) = ( ) = ( ) = ( )
=
∑

0

1 2 14β β                     , , . . . ,

where Brk (t) are admissible assumed time modes for the control inputs and βrk are constant unknown
algebraic control input coordinates that will be determined to meet the control objectives. In

equation (14), Br (t) and βr are Mr-component vectors of ATM and algebraic input coordinates,
respectively, with obvious definitions. For all m-inputs in matrix form, one has

f t B t f t f t f t

B t B t r m

c c
m

T

r
T T

m
T T

( ) = ( ) ( ) = ( ) ( )[ ]
( ) = ( ) = [ ] = ( )

β

β β β β

, . . .

Block iag , . . . , . . . ,

1

1 2 1 15 D                     

The control inputs can be added to the AEM simply by writing their variational work and transforming to
the domain of algebraic states α:

δ δ δα β τ τ δαW f q f A B AcT cT T T
cont . = = = ( ) ( )

in which transformation to nondimensional time is also assumed to be done implicitly. Adding this to the
HLVA equation (5) and taking the time integrals yields the additional control term for the AEM
equation (11):

P Rx N Qα β+ + + = ( )0 0 16

where

Q A BT= ( )∫ d
0

1
17τ

In equation (16), α constitutes the algebraic state vector to be controlled by the algebraic control vector β.

In general, the assumed time modes Brk for the inputs can be taken to be the same as the assumed

time modes Aij for the generalized coordinate(s). However, again, if small time-step transition intervals

are to be used in a time-marching scheme, a simple choice is one in which Mr = 0, k = 0, and Br0(t) = 1
(r = 1,2,. . .,m). That is, each input is a single-term expansion with a constant assumed-time-mode shape
over each interval 0 ≤ τ ≤ 1. This is indeed very well suitable for (digital) implementation of the control

inputs when each control coordinate βrk corresponds to the value of the physical control input. This
particular ATM for controls literally corresponds to a zero-order hold in sampled data systems. Indeed,
the situation does not need to be any more complicated. Simplicity is sufficient and leads to an elegant
implementation form for control inputs with the direct control methodology.



NASA/TM—2002-211582 6

What remains is obtaining the algebraic control inputs β to satisfy the desired controller performance
criteria. Possibly one would be interested in finding the control inputs β as functions of the algebraic
states α that would by definition represent state feedback control. An explicit nonlinear feedback control
solution for the nonlinear dynamics represented by the AEM (eq. (16)) is given in reference 4 by using
the quadratic regulator performance measure typically used in optimal control theory. Herein, we present
a more general formalism for deriving an optimal nonlinear control law that allows a general form for the
control design performance index (CDPI). In particular, the general approach can accommodate quartic
terms in the CDPI in addition to traditional quadratic terms in system states. This is particularly
applicable to the Duffing system that has a quartic energy term which leads to nonlinear behavior.
The direct optimal control solution given in the next section is applicable to a multiple-degrees-of-
freedom, multiple-input system in which q represents an n-component vector of generalized coordinates.

Direct Optimal Nonlinear Control

In the interest of being brief and because of limited space, we shall present only the final form of the
optimal nonlinear control law as the reader can easily verify the omitted details. The results presented in
this section represent a more general form of the specific results presented in reference 4.

Consider a positive definite CDPI of the general functional form that is separated in state and control
variables:

J I q q I f t J Jt s c
c

t

t
s c= ( )[ ]+ ( )[ ] = + ( )∫1

2
18

0

1
, ˙ d

where subscripts s and c indicate the positive semidefinite state and positive definite control dependent
terms of the CDPI. The CDPI can be transformed to the domain of the AEM by introducing the ATM
expansions shown in equations (8) and (15) for the generalized coordinates and the input functions.

However, in equations (8) for n-coordinates, the row index Ark (τ) on the ATM’s would run as
r = 1, . . .,n. In this transformation, since the time dependence of the terms is known by virtue of the
ATM, the time integrals in the CDPI can be evaluated a priori to yield the equivalent algebraic
performance criterion

J q q f J J x Jt
c

s c, ˙, , ,( ) = ( ) = ( ) + ( ) ( )α β α β0 19

The nonlinear optimal control problem is

1. Minimize J(α,β)
2. Subject to the AEM

C P Rx Qα β α β,( ) = + + + =0 0N
�

or equivalently to

C P R x QL Lα β α β,( ) = + + + =0 0�

where the unknowns are α and β. The optimality problem can be solved via the standard Lagrange
multiplier method. Introducing the augmented algebraic CDPI

J J Ca
Tα β α β ν α β, , ,( ) = ( ) + ( ) ( )20
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where ν is the vector of Lagrange multipliers, the necessary conditions for optimality are

∂
∂

= ∂
∂

= ∂
∂

= ( )J J Ja a a

α β ν
0 0 0 21,

which yield the solution for the optimal control:

∂
∂

= ∂
∂

∂
∂













∂
∂

( )
−

J C C Jc
T T

s

β β α α

1

22

It should be noted that the optimal solution is valid for any arbitrary transition interval (t0, t1) of the
motion, provided that admissible ATM expansions exist for that transition interval. Hence, with this

caveat, so far nothing is implied by equation (22) regarding the smallness of the transition interval (t0, t1).
On the other hand, as noted previously, in practice one can also consider a time-marching approach in

which each small time step can be taken to be the transition interval (t0, t1). In this case, the CDPI

becomes a local performance measure optimized for the current time step. One can take t0 = tk–1 and

t1 = tk for a small k
th

 time step along the global time axis and invoke continuity conditions on the system
states from one step to the next time step to study the system for arbitrarily long durations. Typical simple
power series in time can be utilized as ATM’s with such an approach and with this perspective, control
inputs can be taken as zeroth-order expansions in time. These expansions lead to zero-order hold inputs,
thus making the process attractive for digital implementation. Indeed, we have used this perspective in
our work to date on this subject. The explicit form of nonlinear control laws with quadratic CDPI’s
employed as local performance measures for each time step are given in references 4 and 6 with
illustrative examples.

On the other hand, one can also preserve the global perspective on the CDPI for an arbitrarily long

transition interval (t0, t1) (infinite horizon control) while the system and control dynamics, and hence
ATM expansions, are considered over small (local) time-finite elements i along the global time axis

(t0, t1). In this case, it can be shown that the optimal control β at any current k
th

 small time step within an

arbitrarily long transition interval (t0, t1) can be obtained from equation (22) in the form

∂
∂






= ∂

∂


















∂
∂



















∂
∂



















( )
= = =

−

=
∑ ∑ ∑ ∑J C C Jc

i

k

i

T

i

k

i

T

ii

k
s

i

k

i
β β α α

1 1 1

1

1

23

where i denotes all the previous time steps starting from the initial time t0. In equation (23), the control

input β for the current k
th

 time step utilizes the history of the control inputs, system dynamics, and
performance measure up to the current time. Thus, a simple power series form of ATM’s for generalized
coordinates and zeroth-order ATM expansions for controls can still be utilized locally while a global
CDPI is maintained. Full implications of this solution remain to be studied yet.
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Illustrative Examples

Consider the single-degree-of-freedom Duffing dynamics with a strong nonlinearity described by

˙̇q q q f t f tc+ − = ( ) + ( )16 2002 2 3π

The system has unstable saddle points at ±0.8885. For the forced system, take f (t) = 20 cos(17t) and
f c denotes the single control input. CDPI reflects a measure of the total potential energy of the system
and hence includes a quartic penalty term:

J W q W q W q f t R f t tt q q q
cT

f
cT

t

t
= + + + ( ) ( )



∫1

2
2 2 4

2
0

1
˙ ˙ d

 

where Wq, Wq̇ , W
q2 are positive semidefinite state weightings and Rf is the positive definite control

weighting. For simplicity, cross products between the displacements and velocities are not considered.
We use equation (23) to obtain the optimal controls and hence optimize the global CDPI for an

infinite horizon control problem. For system and controller dynamics, we take local time steps of
0.004 sec. The generalized coordinate q is represented as a four-term (N = 3 in eq. (8)) simple power

series in time ATM expansion; thus, α2 and α3 are the unknown algebraic states. A single-term (M = 0)
ATM expansion (zero-order hold) is considered for the control input in equation (14); therefore, there is
single algebraic control input.

We considered initial conditions in the unstable region of the phase plane beyond the saddle point;
thus, the uncontrolled system is unstable. Figures 1 to 3 have initial displacements of 0.89 and initial
velocities of 0.1. Figures 1 and 2 show the controlled response for the unforced and forced Duffing
oscillator with quadratic displacement weighting of 1.5, velocity weighting of 0.0015, and control

weighting of 9×10−
7
 in the CDPI; no weighting on the quartic displacement is considered. Figure 3 shows

the controlled response of the unforced oscillator with the same CDPI weightings as those for figure 1,
but a quartic displacement weighting of 1.0 is also included. Finally, figure 4 shows the controlled
response of the unforced system subjected to unstable initial displacement of 2.0 and initial velocity of
1.0 with CDPI weightings of 0.9 for the quadratic displacement, 0.002 for the velocity, 18.0 for the

quartic displacement, and 9×10−
8
 for the control.

Concluding Remarks

An essential feature of the direct optimal control method is the reduction of the conventional
variational optimal control problem to an equivalent algebraic optimality problem from which the
nonlinear optimal feedback laws are obtained in closed form and are readily applicable to simulate the
closed-loop system. Nonlinearity is not a challenging issue with the direct method as it may have been
with customary indirect approaches via differential equations. Furthermore, the direct method treats the
time-invariant and time-varying systems alike, and the form of the technique has the potential to solve a
larger class of control problems with the same simplicity than would be possible using traditional
variational techniques. A case in point is the direct optimal regulator control of the Duffing dynamics
illustrated herein.
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AppendixAlgebraic Equations of Motion for Forced Duffing System

With the assumed time modes taken as simple power series in time A0 = [1 τ], A = [τ2τ3
...τN

] for the
single-degree-of-freedom Duffing dynamics, one has (eqs. (11), (12), (16), (17))

P P x R R x x N QBL N L N+ ( )[ ] + + ( )[ ] + + =0 0 0 0α

The elements of the required matrices are
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m i i
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c i
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θ θ2 2
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2 3, , , . . . ,
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j k

k MJK =
+ +

=1
1

0 1 1, , . . . ,

I i J j K k= − ( ) = − ( ) = + ( )1 1 1column index , row index , column index

R k
i s i s i s

i N s I i
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
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1 2
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0
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0 1 1
2α α α α

, . . . , ; , column index , row index

P k
i j i j i j

i j N I i J j

NIJ
= −

+ +
+

+ +






+
+ +













= = − ( ) = − ( )

6
1

2
2

1
3

2 3 1 1

4
0
2

0 1 1
2α α α α

, , , . . . , ; row index ; column index

N V V Qf= − − +4
3

4
4α

4
3

2
0 4

0 12
1 2

2 3 1

V x k
i j k i j k

i j k N K k

K

Tα α α α α,

, , , , . . . , ;

( ) =
+ + +

+
+ + +











= = −

for each k, run i,j = row, column indices, and form the scalar product of αT
[k,α0, α1]ijα, where [k,α0, α1]

is the term in [ ] above.

4
4 4

1
1

2 3 2 3 1 1

V k
i j k l

i j N k l N K k L l

KL
Tα α α( ) =

+ + + +


















= ( ) = ( ) = − = −, , , . . . , row,column , , , , . . . , row,column ; ,

for each k and l, form the scalar product αT
{k,l}ijα by running the indices i,j to generate the matrix in

{ }. Put each scalar as the kl element of the matrix [ ]kl where k is the row and l is the column index.
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Q f k N K k

f A t

f
k

K
= ( ) = = − ( )

( ) = +( )
∫θ τ τ τ

τ θτ
0

1

0

2 3 1d , , , . . . , ; row index

cosΩ Ω

where f (τ) is the forcing on the Duffing system with angular frequency Ω and its inclusion under the
N term is merely for compactness and is of no consequence. Since f (τ) is not a function of α, the Jacobian
of N that will arise in applying the optimal control solution equation (22) or equation (23) is

Z
N

Z k
r j k r j kN

i

j
N
T

RK
= ∂

∂













( ) = −
+ + +

+
+ + +









α

α α α,

(for each run as a column index of a row matrix.)

4
1 24

0 1

 , ;    r k j

−
+ + + +











[ ]

− = −

3
1

1

1 1

4k
i j k r

r K k

T

T

α α

α α(for each run as row,  column indices to form the scalar product )

,

 , ;   ,   

, , , = 2, . . . , ;  =

r k i j

i j r k N R

The continuity matrices S0 and S of equation (13), corresponding to the simple power series in time
expansion, are

S S
N0

1 1

0 1

1 1 1

2 3
= 





= 





Block Diag Block Diag
. . .

. . .
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Figure 1.—Control of unforced Duffing dynamics with
   quadratic regulator. Initial displacement, 0.89; initial
   velocity, 0.1; quadratic displacement weighting, 1.5;
   velocity weighting, 0.0015; and control weighting,
   9�10–7.
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Figure 3.—Control of unforced Duffing dynamics with
   quartic regulator. Initial displacement, 0.89; initial
   velocity, 0.1,quadratic displacement weighting, 1.5;
   quartic displacement weighting, 1.0; velocity
   weighting, 0.0015; and control weighting, 9�10–7.
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Figure 2.—Control of forced Duffing dynamics with
  quadratic regulator. Initial displacement,0.89; initial
   velocity, 0.1; quadratic displacement weighting, 1.5;
   velocity weighting, 0.0015; and control weighting,
   9�10–7.
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